

Drone It Yourself! consists of the following modules:

0. INTRODUCTION TO THE DRONETEAM PROJECT
1. BASIC TOY DRONE FRAME
2. MODULE OF FLIGHT CONTROL
3. MODULE OF COMMUNICATION CONTROL
4. MODULE OF ADVANCED FRAME
5. MODULE OF GPS-COMPASS CONTROL
6. MODULE OF PROBLEM MANAGEMENT
7. MODULE OF FLIGHT STABILIZATION SYSTEM
8. MODULE OF FIRST PERSON VIEW
9. DRONETEAM E-LEARNING PLATFORM
10. OTHER DEVELOPMENTS
11. GLOSSARY

This project has been funded with support from the European Commission.
This publication reflects the views only of the author, and the Commission
cannot be held responsible for any use which may be made of the information
contained therein.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
0

MODULE OF
COMMUNICATION

CONTROL
2015-1-ES01-KA202-015925

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
1

Index

1. LIBREPILOT- SOFTWARE CONTROL FOR BASIC DRONE WITH CC3D CONTROLLER 2

1.1. CONNECT MINIUSB FROM CC3D TO PC WITHOUT BATTERY CONNECTION ON CC3D . 3

1.2. PRESS START, LATER PRESS STOP .. 7

1.3. RECEIVER/TRANSMITER SETUP ... 10

1.4. LIBREPILOT .. 16

2. REMOTE CONTROL. ... 25

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
2

1. LIBREPILOT- SOFTWARE CONTROL FOR BASIC
DRONE WITH CC3D CONTROLLER

LibrePilot is an open source software to drone control. LibrePilot project start in July 2015. In
DroneTeam Project we used for basic drone, for drone control and stabilization.

To know more about LibrePilot visit the official webpage (https://www.librepilot.org) and the
source code is available in Bitbucket (https://bitbucket.org/librepilot/) and Github
(https://bitbucket.org/librepilot/).

Following steps are collected to show how to configure LibrePilot in DroneTeam basic drone
proposed:

https://www.librepilot.org/
https://bitbucket.org/librepilot/
https://bitbucket.org/librepilot/

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
3

1.1. CONNECT MINIUSB FROM CC3D TO PC WITHOUT
BATTERY CONNECTION ON CC3D

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
4

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
5

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
6

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
7

1.2. PRESS START, LATER PRESS STOP

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
8

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
9

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
10

1.3. RECEIVER/TRANSMITER SETUP
TRANSMITER SETUP

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
11

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
12

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
13

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
14

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
15

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
16

1.4. LIBREPILOT

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
17

MOVE CONTROLLERS AS INDICATION IN SCREEN

SKIP FLIGHT CONTROLLER SETUP

SKIP ACCESSORIES 01 SETUP

SKIP ACCESSORIES 02 SETUP

SKIP ACCESSORIES 03 SETUP

SKIP ACCESSORIES 04 SETUP

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
18

CENTER STICKERS

MOVE STICKERS TO BE SURE THAT MOVE IN CORRECT DIRECTION

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
19

IF ANY STICKER MOVE INVERTED, IN NEXT STEP YOU CAN REVERSE STICKERS MOVEMENT JUST
CLICK IN CHECKING BOX

(THROTTLE (UP/DOWN), YAW (LEFT/RIGHT) LEFT STICKER)

(PITCH (UP/DOWN), ROLL (LEFT/RIGHT)  RIGHT STICKER)

LAST STEP IS RELATED TO ARMING MOTORS

IN ARMING SETTING, ARM AIR FRAME USING THROTTLE OFF AND “YAW RIGHT”

TIMEOUT “5” SECONDS

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
20

ARMING MOTORS (5 seconds)

DISARMING MOTORS (5 seconds)

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
21

WARNING: Some firmware versions are not compatible with the CC3D board, we recommend
for now to don’t upgrade the firmware and just skip that step in the Wizard.

Once you have finished the wizard you should add the following for the PID settings.

BINDING TRANSMISOR/RECEIVER (ONLY IF RED LIGHT IN NOT FIXED IN RECEIVER)

Binding is necessary to teach the receiver the code of the specific transmitter so that they can
talk to each other.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
22

NOTE: This would be not necessary if you are using the Transmitter-Receiver that are packed in
the same box.

1. Connect the Turnigy 2.2 battery into the Transmitter (Don’t turn on the transmitter).
2. Connect the binding wire(Jumper) in the bind port of the Receiver.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
23

3. Using the Transmitter (power off) hold the button (Bind range test) and switch on the
transmitter.

4. Keeping the Bind Range Test held go to the next step.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
24

5. Power up the Receiver, using the 3 wire cable connector and plug it into the Receiver
power port.

6. Turn off the transmitter, take off the power cable of the receiver and take off the bind
cable of the receiver as well.

7. If this this step has been made properly whenever you turn on the transmitter the led
in the receiver should go on (steady red light), or off if you turn off the transmitter.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
25

2. REMOTE CONTROL.
New extra activity is use Arduino for remote control.

To create a connection between a drone and a phone we had to establish a wireless connection
via Wi-Fi.

The first step was to turn an esp32 into access point mode. This mode is available from the public
esp32 library.

Mavlink is a communication protocol with small vehicles such as drones, cars, etc. It is used in
the Mission Planner software, a ground control station for drones. The large openness of the
protocol and community support allow you to customize your Mavlink.

The basics of the Mavlink protocol and how to implement it for Arduino is described.

Introduction to the protocol

Using the protocol in practice is not particularly difficult and can be implemented on many
platforms. Nevertheless, the basics are an advanced topic.

Much more about the Mavlink can be read here:

Before we start working with the code, we must declare our environment:

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
26

#include <Arduino.h>
#include <mavlink.h>

int sysid = 255;//GCS ///< ID 20 for this airplane.
1 PX, 255 ground station
int compid = 190;//Mission Planner ///< The component
sending the message
int type = MAV_TYPE_QUADROTOR; ///< This system is an airplane /
fixed wing

// Define the system type, in this case an airplane -> on-board
controller
uint8_t system_type = MAV_TYPE_GENERIC;
uint8_t autopilot_type = MAV_AUTOPILOT_GENERIC;

// Hardware definitions
uint8_t system_mode = MAV_MODE_TEST_ARMED; /// /* UNDEFINED mode. This
solely depends on the autopilot - use with caution, intended for
developers only. | */
uint32_t custom_mode = MAV_MODE_FLAG_SAFETY_ARMED; ///< Custom mode,
can be defined by user/adopter
uint8_t system_state = MAV_STATE_STANDBY; ///< System ready for flight

At the beginning, we import the Mavlink and Arduino library and then define the variables
representing our device. The dependent will be whether the protocol will correctly interpret the
data. The set of all possible configurations can be found in the common file.

Basics of communication

Mavlink support requires us to declare a message variable and a buffer. These variables used
when sending and receiving commands:

// Initialize the required buffers
mavlink_message_t msg;
uint8_t buf[MAVLINK_MAX_PACKET_LEN];

The rules of communication

Devices that work with the Mavlink protocol do not send or receive any data themselves.
Everything we want to do we have to signal with a command (pack) or request (request).

//Request a data from a device
mavlink_msg_request_data_stream_pack(2, 200, &msg, 1, 0,
MAVStreams[i], MAVRates[i], 1);

//Send a heartbeat packet
mavlink_msg_heartbeat_pack(255,0, &msg, type, autopilot_type,
system_mode, custom_mode, system_state);

Connection indication

The Mavlink for signalling the connection state uses the heartbeat object. In later coding it is
rather unnecessary. The package itself can extract information such as the current mode or
protocol version.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
27

mavlink_message_t msg;
mavlink_status_t status;

mavlink_heartbeat_t hb;
mavlink_msg_heartbeat_decode(&msg,&hb);

 #ifdef DEBUG
 Serial.print(millis());
 Serial.print("\ncustom_mode:
");Serial.println(hb.custom_mode);
 Serial.print("Type: ");Serial.println(hb.type);
 Serial.print("autopilot: ");Serial.println(hb.autopilot);
 Serial.print("base_mode: ");Serial.println(hb.base_mode);
 Serial.print("system_status:
");Serial.println(hb.system_status);
 Serial.print("mavlink_version:
");Serial.println(hb.mavlink_version);

Arduino with Mavlink - Reading data

By using the Mavlink gadget we can read and interpret several information from the device. In
following steps, we will describe how to do it.

The protocol itself only issues one information. This information is the Heartbeat package. To
receive any other data, we must ask for it in advance. How to do it?

The first thing to do is declare some time interval. Thanks to this, Mavlink will send us a new
portion of information from time to time. At the beginning, variables. Such declaration of
variables in the code will wait with the receipt of data streams minute and the interval will be
called every second. In a later call, the code looks something like this:

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
28

In the code above, two lines are very important. In line 9 on the SerialMAV object (serial
connection is created), we call the write () method. Thanks to this, we will save the data request
to the buffer.

In turn, the function for data streams is called on line 15.

Data request

In order for Mavlink to send us information, we must first enter the required package into the
buffer and specify the parameters for it. We call these two functions before the code above.

// Pack the message
mavlink_msg_heartbeat_pack(255,0, &msg, type, autopilot_type,
system_mode, custom_mode, system_state);
uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);

Data streams

The packages that will flow to the receiving device can be defined via Mavlink streams.

void Mav_Request_Data()
{
 mavlink_message_t msg;
 uint8_t buf[MAVLINK_MAX_PACKET_LEN];

 // To be setup according to the needed information to be requested
from the Pixhawk
 const int maxStreams = 1;
 const uint8_t MAVStreams[maxStreams] = {MAV_DATA_STREAM_ALL};
 const uint16_t MAVRates[maxStreams] = {0x02};

 for (int i=0; i < maxStreams; i++) {
 mavlink_msg_request_data_stream_pack(2, 200, &msg, 1, 0,
MAVStreams[i], MAVRates[i], 1);
 uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
 SerialMAV.write(buf, len);
 }
}

In the MAVStreams array, we need to choose the range of packages. These constants can be
found in the common file. Below are some of the more important ones.

MAV_DATA_STREAM_ALL - All packages

MAV_DATA_STREAM_RAW_SENSORS - Raw data for: GPS, IMU

MAV_DATA_STREAM_EXTENDED_STATUS - GPS Status, Control Status, AUX Status

MAV_DATA_STREAM_RC_CHANNELS - RC (Radio control) channels and their variations like
RAW or SCALED

MAV_DATA_STREAM_RAW_CONTROLLER - Altitude parameters, controller output

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
29

MAV_DATA_STREAM_POSITION - Local / global positions

In the MAVRates table, we define frequencies for streams. It is not entirely clear to me how this
is determined.

Interpretation of data

When the information is already in the buffer, we can finally create a switch with fixed Mavlink
to extract data from the device. The code below is an implementation for the APM 2.6 drone.

mavlink_message_t msg;
mavlink_status_t status;

while(SerialMAV.available()) {
 uint8_t c = SerialMAV.read();

 // Try to get a new message
 if(mavlink_parse_char(MAVLINK_COMM_0, c, &msg, &status)) {

 case MAVLINK_MSG_ID_HEARTBEAT: // #0: Heartbeat
 {
 // E.g. read GCS heartbeat and go into
 // comm lost mode if timer times out
 //Serial.println("MAVLINK_MSG_ID_HEARTBEAT");
 mavlink_heartbeat_t hb;
 mavlink_msg_heartbeat_decode(&msg, &hb);
 Serial.print("State: "); Serial.println(hb.base_mode ==
209 ? "Armed" : "Disarmed");
 Serial.print("Mode: ");
 switch(hb.custom_mode) {
 case 0:
 Serial.println("Stabilize");
 break;
 case 2:
 Serial.println("AltHold");
 break;
 case 3:
 Serial.println("Auto");
 break;
 case 5:
 Serial.println("Loiter");
 break;
 case 7:
 Serial.println("Circle");
 break;
 default:
 Serial.println("Mode not known");
 break;
 }
 }
 break;
 case MAVLINK_MSG_ID_SYS_STATUS: // #1: SYS_STATUS
 {
 /* Message decoding: PRIMITIVE
 * mavlink_msg_sys_status_decode(const
mavlink_message_t* msg, mavlink_sys_status_t* sys_status)
 */
 mavlink_sys_status_t sys_status;

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
30

 mavlink_msg_sys_status_decode(&msg, &sys_status);
 Serial.println("Battery (V): ");
 Serial.println(sys_status.voltage_battery);
 }
 break;
 case MAVLINK_MSG_ID_ATTITUDE: // #30
 {
 /* Message decoding: PRIMITIVE
 * mavlink_msg_attitude_decode(const mavlink_message_t*
msg, mavlink_attitude_t* attitude)
 */
 mavlink_attitude_t attitude;
 mavlink_msg_attitude_decode(&msg, &attitude);
 Serial.println("ROLL: ");
 Serial.println(attitude.roll);
 }
 break;
 //Not overriden channels
 case MAVLINK_MSG_ID_RC_CHANNELS_RAW: // #35
 {
 /*
 * RC (Radio controll) channels are the inputs and outputs
for controlling all
 * actions called from joystick / mission planner. E.g.
arm, throttle, pitch.
 */
 mavlink_rc_channels_raw_t chs;
 mavlink_msg_rc_channels_raw_decode(&msg, &chs);

 Serial.print("Roll: "); Serial.print(chs.chan1_raw);
 Serial.println();
 Serial.print("Pitch: "); Serial.print(chs.chan2_raw +
'\n');
 Serial.println();
 Serial.print("Throttle: "); Serial.print(chs.chan3_raw +
'\n');
 Serial.println();
 }
 break;
 }
}

This is only part of the information we can get through the Mavlink protocol. Finally, the whole
code should be placed in the loop () function in Arduino. All other constants needed for the
implementation can of course be found in the common file.

Arduino with Mavlink - Send commands

The Mavlink protocol also allows us to send commands to devices. Thanks to this, we can control
the rotation of the drone motors.

Introduction

Sending commands and in this case is based on cyclical saving of information packets to the
buffer. In my code I wanted to create an implementation for controlling drone data such as:
flight mode, arming and RC channels.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
31

At the beginning, we must declare global variables that store the current state of the drone.
boolean current_arm = false;
String current_mode = STABILIZE;
int current_roll = 0;
int current_pitch = 0;
int current_throttle = 0; //Min value is 1150 to run motors
int current_yaw = 0;

In most online tutorials, the code for receiving and sending data is mixed together. We decided
to make the code somewhat more flexible and transferred every action to the function with
parameters.

void loop() {

 // Initialize the required buffers
 mavlink_rc_channels_override_t sp;
 mavlink_message_t msg;
 uint8_t buf[MAVLINK_MAX_PACKET_LEN];

 //We have to send the heartbeats to indicate side by side connection
 mav_heartbeat_pack();

 mav_set_mode(current_mode);

 mav_arm_pack(current_arm);

 // ROLL, PITCH, THROTTLE, YAW
 mav_override_rc(current_roll, current_pitch, current_throttle,
current_yaw);

 ...
}

Now we will go on to describe each of them.

Broadcasting a heartbeat

This is the simplest function and its calling contains only system parameters. Mavlink to send
the heartbeat package will answer us the same.

This is what functions to call and what arguments can be found in the mavlink_msg_heartbeat.h
file in the mavlink / common / folder. We do the same for other commands.

void mav_heartbeat_pack() {
 mavlink_message_t msg;
 uint8_t buf[MAVLINK_MAX_PACKET_LEN];

 // Pack the message
 mavlink_msg_heartbeat_pack(255,0, &msg, type, autopilot_type,
system_mode, custom_mode, system_state);
 uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
 SerialMAV.write(buf, len);
}

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
32

Change of flight mode

The change of the flight mode is based on the mavlink_msg_set_mode_pack function call. This
function for APM 2.6 worked when the target_system parameter is 1. We define the given flight
mode with the custom_mode parameter in the last place.

void mav_set_mode(String value) {
 mavlink_message_t msg;
 uint8_t buf[MAVLINK_MAX_PACKET_LEN];

 value.trim();

 //SET_MODE
 //Works with 1 at 4'th parameter
 if (value == STABILIZE){
 mavlink_msg_set_mode_pack(0xFF, 0xBE, &msg, 1, 209, 0);
 }

 if (value == ALTHOLD){
 mavlink_msg_set_mode_pack(0xFF, 0xBE, &msg, 1, 209, 2);
 }

 if (value == LOITER){
 mavlink_msg_set_mode_pack(0xFF, 0xBE, &msg, 1, 209, 5);
 }

 if (value == AUTO){
 mavlink_msg_set_mode_pack(0xFF, 0xBE, &msg, 1, 209, 3);
 }

 if (value == CIRCLE){
 mavlink_msg_set_mode_pack(0xFF, 0xBE, &msg, 1, 209, 7);
 }

 uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
 SerialMAV.write(buf, len);
}

Arming the drone

The use of this action made a problem, because in the Mavlink to arm and disarm we use the
so-called long command (command_long) MAV_CMD_COMPONENT_ARM_DISARM (400).

void mav_arm_pack(boolean state) {
 mavlink_message_t msg;
 uint8_t buf[MAVLINK_MAX_PACKET_LEN];

 //Arm the drone
 //400 stands for MAV_CMD_COMPONENT_ARM_DISARM
 // 1 an 8'th argument is for ARM (0 for DISARM)
 if(state) {
 //ARM
 mavlink_msg_command_long_pack(0xFF, 0xBE, &msg, 1, 1, 400,
1,1.0,0,0,0,0,0,0);
 }else {
 //DISARM

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
33

 mavlink_msg_command_long_pack(0xFF, 0xBE, &msg, 1, 1, 400,
1,0.0,0,0,0,0,0,0);
 }
 uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
 SerialMAV.write(buf, len);
}

What is needed for this is the mavlink_msg_command_long_pack function, where as parameter
6 we define the use of just a long command. They are used as commands during mission
planning, for example at Mission Planner. The next 8 parameters are the parameters of the long
command.

Adjusting RC channels

RC channels (Radio control) are responsible for signals from the apparatus: this joystick to
control the device.

Thanks to them, we can introduce our own values, e.g. for throttle or yaw rods. Generally, it is
possible to overwrite all elements of the apparatus, but we are limited to 8 channels.

void mav_override_rc(int roll, int pitch, int throttle, int yaw) {
 mavlink_message_t msg;
 uint8_t buf[MAVLINK_MAX_PACKET_LEN];

 mavlink_msg_rc_channels_override_pack(0xFF, 0xBE, &msg, 1, 1, roll,
pitch, throttle, yaw, 0, 0, 0, 0);
 uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
 SerialMAV.write(buf, len);
}

In the case of APM 2.6, we had to check the channels in Mission Planner. You can do it with the
help of even any pad in the emulation mode of the apparatus in the program.

Indication of a wireless connection

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
34

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
35

Basis for the soft AP server

Implicit Arduino uses softwareSerial library to establish an UART connection.

Esp constructors decided to implement faster and more flexible hardwareSerial.

Serial data transfer: Every action that is passed through serial ports is a simple text command.

As a first step we had to check our connection and return results.

A good way to do that was to write a simple ping interval.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
36

Implementation in a drone app: We had to rewrite all the interfaces to the app’s side code.

In the first approach application has automatically found esp server and connected to it.

Testing a PWM ports:

PWM (Pulse Width Modulation) allows to move out modulated signal of value between 0-255.

Good way to learn how the PWM works, was to make a common LED example.

PWM modulation is widely used in motor regulation.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
37

Locate RX and TX pins:

Different GPIO’s

GPIO1, GPIO3 support serial connection but block other serial ports like usb so it’s quite
problematic using them.

In a next step we decided to change ports to the GPIO16, GPIO17.

Esp32 serial tricks:

HardwareSerial supports baud rate from 9600 to 115200, where 115200 is the fault value.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
38

It is possible to run synchronized 57600 hardwareSerial for APM telemetry and a Serial 115200
for a app commands.

Creating an GUI in app:

Discussing a proper development:

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
39

It is necessary to review Mavlink Documentation and Arduino code.

These sources are crucial in a code development because Mavlink is well documented but for
experts.

Changing app architecture

Changing the code layout on the M (model) V (view) P (presenter) approach.

The big amount of code and high complication forced me to separated code sections.

Thus now app is more flexible and easier to testing.

Connection

Initiating serial outputs

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
40

Problems with CC3D:

cc3d does not use mavlink interface and requires software serial

Raw bitframes

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
41

Exchange from CC3D to APM

Changing from basic (CC3D) control to advanced control (APM). DroneTeam used CC3D for basic
drone and APM for advanced drone. How to change is explained in following steps:

Connexions MavLINK vs APM

Mavlink and APM

With APM the things had gone match better. APM supports hardwareSerial and Mavlink
commands.

We were able to use already written mavlink code and check bits’ transfer

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
42

Indicating serial read:

Mavlink explanation:

Drones are using heartbeat to confirm a connection.

Receiving heartbeat packets is first and most important thing.

After that we can decode other drone’s parameters.

Sending mavlink requests

After we have learned how to receive mavlink’s data we are able to send our commands.

As always the initial thing is to arm the drone.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
43

We have discovered that:

- Base mode= 81 (drone disarmed)

- Base mode=209 (drone armed)

Drone disarmed

Drone armed

Recognition RC channels

RC (Radio Controller- every equivalent of telemetry).

RC channels correspond to actions that are called on the telemetry e.g. flight mode, pitch, rtl.

We had to check witch channels were for pitch, roll, throttle, yaw.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
44

Channels

• 1- roll

• 2- pitch

• 3- throttle

• 4- yaw

• From CH5- to CH8: free

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
45

What command is for motors?

Command DO_SET_SERVO is only used for extra servos like triggers arms.

For setting speed of a motor we have to use

Mavlink_msg_rc_channels_override.

Reading flight modes

In order to check and change current flight mode in Arduino I read custom_mode parameter.

Custom_mode returns number representation of current mode.

A value that stands for a number can be checked in file common.xml

The biggest breakpoint

Our drone starts running above 1150 value over throttle.

Before that the drone had to be armed.

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
46

Designing indication system

For pointing present state (arm, stabilize, throttle) we use builtin and outers leds.

• Blue- serial data read

• Red- state of esp32

• White- connection with a phone

• Yellow- arming state

• Green- throttle in percent

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
47

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
48

Arming with a button

DRONETEAM PROJECT NO. 2015-1-ES01-KA202-015925

3. MODULE OF COMMUNICATION CONTROL
49

Final esp32 control

Code summary

After working in communication control, the following table summarised the development did
in this Project:

Source code for remote control of drones.

Link to the repository with the application code:

https://github.com/tmaxxdd/DronE

Link to the repository with code for tile electronics ESP32:

https://github.com/tmaxxdd/arduino-with-mavlink

Arduino

• Created
files: 15

• Libraries: 34

• Lines of
code: 645

Android

• Created files: 43

• Libraries: 26

• Lines of code: 19 087 (with
libraries)

https://github.com/tmaxxdd/DronE
https://github.com/tmaxxdd/arduino-with-mavlink

	1. LIBREPILOT- SOFTWARE CONTROL FOR BASIC DRONE WITH CC3D CONTROLLER
	1.1. CONNECT MINIUSB FROM CC3D TO PC WITHOUT BATTERY CONNECTION ON CC3D
	1.2. PRESS START, LATER PRESS STOP
	1.3. RECEIVER/TRANSMITER SETUP
	1.4. LIBREPILOT

	2. REMOTE CONTROL.

